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ABSTRACT A molecular model of poorly understood hy-
drophobic effects is heuristically developed using the methods
of information theory. Because primitive hydrophobic effects
can be tied to the probability of observing a molecular-sized
cavity in the solvent, the probability distribution of the
number of solvent centers in a cavity volume is modeled on the
basis of the two moments available from the density and radial
distribution of oxygen atoms in liquid water. The modeled
distribution then yields the probability that no solvent centers
are found in the cavity volume. This model is shown to account
quantitatively for the central hydrophobic phenomena of
cavity formation and association of inert gas solutes. The
connection of information theory to statistical thermodynam-
ics provides a basis for clarification of hydrophobic effects.
The simplicity and flexibility of the approach suggest that it
should permit applications to conformational equilibria of
nonpolar solutes and hydrophobic residues in biopolymers.

Hydrophobic interactions are widely believed to be of domi-
nating importance for protein structure, aggregation, and
function. However, the molecular theories of hydrophobic
interactions (1-10) have not been used so far in molecular
studies of protein structure. This is partly because these
theories have limitations that are still being clarified (5, 11-21)
and partly because of their complexity. This paper suggests a
new approach to molecular theories of hydrophobic effects and
then tests the simplest model to which this suggestion leads. It
is argued that the simplicity and flexibility of this approach
should eventually permit its application to issues of protein
structure in solution.

Alternative descriptions of hydrophobic effects that are used
are based upon parameterizations of solubility data (22-26).
Those hydrophobicity models have not changed essentially
from the concepts of Kauzmann (27) but the solubility data
have been parameterized in a variety of ways (28-31). Al-
though solubility models of hydrophobic effects have been
useful, molecular-level theories are expected to have wider
applicability and to improve our understanding of hydrophobic
effects on biomolecular structure. This could be particularly
important to recent work that probes protein solution struc-
ture in new ways.
One example of such work is reversible denaturation exper-

iments. The observed destabilization of folded proteins with
decreasing temperature is an evidence of hydrophobic inter-
actions. Cold/heat denaturation of globular proteins (32-34),
pressure denaturation (35-39), and the effects of osmotic
stress (40-49) demonstrate that the solvent activity affects the
structure. However, parameterizations of hydrophobicity mod-
els that reflect the activity of the aqueous medium have not
been pursued extensively (50).
The adequacy of solubility models is also not obvious in

studies of the structures of folding intermediates on renatur-

ation pathways. These studies are expected to teach how
proteins fold and perhaps then lead to better methods of
predicting the folded structures (51, 52). The solubility models
are parameterized for well-defined structures of native pro-
teins. For folding intermediates, in contrast, several structures
are available, the exposures of different residues to water
might be quite different from those known in fully folded
proteins, and, furthermore, the characteristics of the protein-
water interface will be different from those known. It is
relevant, for example, that the hydrophobicity models do not
describe solvent-separated hydrophobic interactions or desol-
vation barriers to contact that might be significant for folding
intermediates (53).
As a final example that motivates renewed theoretical work

on hydrophobic effects, we mention the current research on
predicting the folded structures of polypeptides using "knowl-
edge-based" contact potentials obtained by analyzing a train-
ing set of protein structures (31, 54). Such approaches have
produced interesting results; however, in the absence of a clear
connection between the contact potentials and molecular
principles, the incompletely resolved question of adequacy of
the training set is crucial. For example, the solution conditions
of crystal structures are a potentially important but generally
ignored feature of the training set. In addition, it seems likely
that economy of description could be obtained "from a deeper
understanding of how the various physical contributions can be
represented with minimum redundancy" (31). A molecular-
level theory of hydrophobic interactions might provide such a
representation.
Here we develop an information theory model of hydro-

phobic effects. It has some conceptual overlap with knowl-
edge-based contact potentials but it is sharply distinguished
from the latter by providing a clear connection to molecular
principles of statistical thermodynamics. We present the sim-
plest such model, based upon information readily accessible
from experiment or computer simulations, and test it for
prediction of the most primitive hydrophobic phenomena: the
thermodynamics of hydration -and association of model hard
core solutes. As we will show, this model proves sufficient to
describe these primitive hydrophobic phenomena quantita-
tively. We will note also and comment upon the significant
overlap that this simplest model has with the most detailed of
the available molecular theories (3, 15).

THEORETICAL DEVELOPMENT
Chemical potentials of nonpolar solutes at infinite dilution in
water are the quantities of ultimate interest here. We shall be
concerned with the excess chemical potential Agkex of model
solutes that perfectly repel centers of water molecules from a
solute excluded volume. We will identify the center of a water
molecule as the position of its oxygen atom. This definition of
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a solute molecular volume is consistent with molecular models
that are commonly used in detailed calculations and for the
simulation data considered below. It is known that the effects
of more general solute-solvent interactions can be treated at a
subsequent step (4). Statistical mechanics relates A1YeX to the
probability po of finding an empty volume Av, or cavity, of
given size and shape in water, A,ex = -kBT lnpo. For atomic
and small molecule-sized cavities,po can be calculated directly.
However, similar calculations for larger cavities become dif-
ficult. We seek models that are applicable to cavity shapes and
sizes inaccessible to direct calculations.
We address the problem of modelingpo by considering the

set of probabilitiesp, of finding exactly n solvent centers in the
cavity volume, n=oPn = 1, and modeling the distributionpn.
Observation of no solvent molecules in the cavity region is then
just one of the elementary events and po is just one of the
desired probabilities.

Information theory (55, 56) provides an approach to the
modeling of pn. We adopt a relative or cross entropy (55)

Pn7 = E.Pn In [ 1

withpl representing a chosen "default model." The jn of the
default model serve as a reference estimate of the probabili-
ties: they will equal the default model if no further information
is supplied. The probabilities pn are then obtained by maxi-
mizing q subject to the constraints of the available information.
For our problems that information includes the moments

(n) = pAv, [2]

(n(n - 1)) =p2J dr dr'g(Jr - r'l), [31
Av Av

where g(r) is the water oxygen radial distribution function and
p is the water density.

In principle, this model can be incrementally improved by
including higher moments. However, we only use the moments
Eqs. 2 and 3 because the density p and radial distribution
information g(r) are available and the integrations over the
solute volume to calculate the two moments are simple
enough.
Another way to improve such models is to learn a good

default model 9. A sophisticated default model would be the
results for a simple liquid (13, 17-19) solvent, presumed
separately known. Another default model isfn oc 1/n!. This
produces the Poisson distribution if only the mean value (n) is
supplied as information. This form is associated with Gibbs's
development of classical statistical thermodynamics and we
call this the Gibbs default model. Another alternative is the flat
default model, where 'n is a positive constant for n ' nmax and
zero otherwise. If nmax is chosen sufficiently large, its value has
no appreciable effect on the pn,
We explicitly view this approach as a heuristic method for

discovering simple models forpn. We don't attempt to justify
more basically the pn used or the pn obtained except to note
what works well.
We have found that the pn observed by simulation of liquid

water are simple. A sophisticated consideration ofpn has not
been necessary so far. Fig. 1 shows thepn obtained from Monte
Carlo simulation of the simple point charge (SPC) model of
water (58) at the thermodynamic state 298 K and 1.0 g/cm3 for
a spherical exclusion volume Av with radius d; this parameter
d would be the solute-solvent exclusion diameter, or distance
of closest solvent approach, for a hard sphere solute. The lnp,
are seen to be closely parabolic. This would be the behavior
predicted using the flat default model with nm, -X*0 and the

10-

10-2

10-3

1 4

10-5

10-6

10-7
1i-8

1o-9
0 2 4 6 8 10 12 14

n

FIG. 1. Probabilities pn of observing n solvent centers in spherical
cavity volumes. Results from Monte Carlo simulation (57) of 512 SPC
water molecules (58) are shown as symbols. The parabolas are the
predictions of information theory using the flat default model and the
moments of Eqs. 2 and 3. The center-to-center exclusion distance, d
(in nanometers), is noted next to each curve.

moments of Eqs. 2 and 3. Thus, we here dispense with other
considerations and use this extremely simple model only.
We emphasize the simplicity of this quadratic model. What

is required is the calculation of the moments Eqs. 2 and 3 and,
since nm, -° 00, the fitting of the formpn = exp(AO + Ailn +
A2n2) with Lagrange multipliers Ao, AI, A2 determined by the
conditions I'=0Pn = 1, =Oa pn = (n), and n'=o n2pn = (n2).
From this, we extract the po that provides the desired ther-
modynamic result. This procedure can be readily applied to
solutes of arbitrary shapes in bulk water or in anisotropic
environments near the surface of a protein.

RESULTS
Fig. 2 shows the chemical potential of a hard sphere solute in
water calculated from the model and directly from cavity
statistics. We find excellent agreement in the range considered.
This simple model accurately reproduces the thermodynamics
of cavity formation in the region that is accessible to direct
computer simulations (13, 17-19).
We next proceed from hydrophobic hydration of a hard

sphere solute to hydrophobic interactions between solutes. The
free energy changes associated with bringing together two
inert gas atoms correspond to the potential of mean force
(pmf). The model provides us with the means of calculating
this pmf. With the known density and radial distribution
function, we calculate the two moments Eqs. 2 and 3 for the
volume enclosed by the two solute spheres with given distance
of closest solvent approach d and solute center-to-center
separation r. Fitting the distribution to this information and
extracting p0 produces an approximate chemical potential
Aluex(r) for the two-sphere solute. The pmf is then defined as
W(r) = A1 ex(r) - lims. Ap1ex(s).
Here we study the association of two cavities of methane size

in water. For the distance of closest solvent approach to the
spheres, we have chosen a value of d = 0.33 nm. This is the
smallest distance at which methane-water pair correlations
reach 1.0 in commonly used models (60). The cavity pmf is
shown in Fig. 3. As a reference, the cavity potential produced
by the molecular dynamics simulation of Smith and Haymet
(16) is included. This was obtained by subtracting the solute-
solute potential from the pmf of methane association. Again,
we find quantitative agreement between the simple model and
the results of direct computer simulations. The model cavity
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FIG. 2. Hydrophobic hydration: comparison of the chemical po-
tential calculated from simulation (symbols) and the information
theory model (line) for hard sphere solutes with d the distance of
closest approach of a water oxygen to the solute. The integral Eq. 3
required by the model was reduced to one-dimensional integration
(59). The simulation results were gathered from test-particle insertion,
where 8000 configurations (separated by 50 passes each) of a Monte
Carlo simulation (57) of 512 SPC water molecules (58) were used. The
same simulation was used to calculate the water-oxygen radial distri-
bution function g(r).

pmf shows a strongly favored region with overlapping cavities,
separated by a substantial barrier from a solvent-separated,
stable minimum at about 0.7 nm distance. We observe also a
shallow third minimum at 1.1 nm separation.
We note that structural data on the solvation of one sphere,

if they were available (61), could be used as information to
predict the opening of a cavity for a second sphere in the
neighborhood of the first sphere. Similarly, structural data on
the solvation of two spheres could be used with information
theory to predict the potential of mean force for three spheres,
and so on.
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FIG. 3. Hydrophobic interaction: pmf of cavity association. r is the
separation between the centers of two spherical cavities. The distance
of closest solvent approach is d = 0.33 nm. The result of the
information theory model (solid line) is compared with the cavity pmf
of Smith and Haymet (16) (dotted line; from figure 4 of ref. 16). The
simulation result was based upon continuous solute-solvent interac-
tions (16) rather than the hard core interactions treated by the model.
The insets illustrate the size of the excluded volume. At the solvent-
separated pmfminimum (0.7 nm), a water molecule barely fits between
the two hard sphere solutes.

As a last example, we study the torsional equilibrium of
n-butane. Fig. 4 shows the cavity pmf as a function of the
torsional angle 4), which is compared to explicit computer
simulation results of Beglov and Roux (62). In complete
agreement with the computer simulations, we find that the
more compact cis (4 = 0) and gauche (4 = ir/3) structures are
favored over the extended trans conformation (4) = i) by
about 1.8 kU mol-1 and 0.7 kJ mol-1, respectively.

DISCUSSION
The successes of the present applications are tied to the
remarkable simplicity of the data in Fig. 1. Those results show
that the ln Pn are closely parabolic in the range considered.
However, they are notprecisely parabolic. For example, a close
examination of Fig. 1 for the larger radii shows that p, is
somewhat depressed relative to the quadratic model. We
conjecture that this is associated with the fact that the solvent
water is expected to pull away from the walls of macroscopi-
cally large hard spheres since it does not wet those nearly flat
surfaces (2). Physical effects such as these can be built into
information theory models. For example, the information
underlying the moments Eqs. 2 and 3 would be used more fully
by stratifying the observation volume to examine and constrain
the probability of solvent occupancy in thin surface shells. It is
an important virtue of this approach that physical insights can
often be directly incorporated into the model and tested. The
discovery and codification of effective default models n (13,
17-19) will surely be the path to advance this method of
describing hydrophobic effects.

Chandler (15) has given a helpful interpretation of the
Pratt-Chandler theory (3) of hydrophobic effects using an
assumption of Gaussian fluctuations of the solvent density
field. Such a model may be referred to as a Gaussian field
model (15). Chandler concludes that if the solvent density
fluctuations were distributed precisely as a Gaussian func-
tional then the solvent density distortion due to the imposition
of a hard blocking object-the solute-would be described by
the Pratt-Chandler theory. The present model also relies on
the nearly parabolic behavior shown in Fig. 1. Thus, these two
approximate theories have an important qualitative similarity.
Both models use information on a central portion of a distri-

0 nA4 n/2 S1C/4
*, rad

FIG. 4. Torsional pmf of n-butane. Butane was modeled as four
spheres with distance of closest solvent approach d = 0.33 nm, bond
length 0.153 nm, and tetrahedral bond angles. The result of the
information theory model (solid line) is compared with the cavity pmf
of Beglov and Roux (62) (dotted line; from figure 8 of Ref. 62). The
simulation result was based upon continuous solute-solvent interac-
tions (62) rather than the hard core interactions treated by the model.
The cis, gauche, and trans rotational states are shown as insets.
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bution and then extract behavior in a far wing of that distri-
bution. However, these two theories are not identical. The
most important distinction is that the Gaussian field model is
most appropriate for long wavelength density fluctuations and
does not require that spatial integrals of density fields be
natural numbers, i.e., nonnegative integers. Chandler (15)
emphasizes this limitation by stating that the Gaussian field
model does not well describe the particulate nature of matter.
For example, the Gaussian field model can predict positive
probabilities of occupancy by negative numbers, n < 0, of
molecules.
The present model has been limited to using only the known

density p and the oxygen-oxygen radial distribution function
g(r). The exploitation of empirical information of that sort has
frequently been a feature of molecular theories of hydrophobic
effects (1-3, 13, 15, 17-19). Since the present development
continues that tradition but strives for a minimum of extrane-
ous assumptions, we regard it as a synthesis of those previous
theories for the solvation properties discussed here.
The development here has made a clear separation of the

effects of short ranged, repulsive solute-solvent interactions
and longer ranged, attractive interactions. Such a separation is
a basic idea of the theory of liquids (63) and was a feature of
the earliest molecular theories of hydrophobic effects (1-3). A
full treatment of realistic solutes must also include longer
ranged attractive interactions (4). A clear separation of the
effects of interactions that have different physical character is
important for the microscopic interpretation of surface ten-
sion models of hydrophobicity (64-76).

CONCLUSIONS
The two-moment information theory model provides an ac-
curate description of the primitive hydrophobic effects, includ-
ing solvent-separated hydrophobic interactions, for which we
have molecularly detailed computer experimental data. When
the cavities of interest are much larger than the size of the
solvent molecules, other physical effects need to be considered
(2). In addition, more general solute-solvent interactions need
to be treated (4). However, problems of biophysical interest,
such as interactions of ligands with binding sites (77), effects
of point mutations on protein-solvent interactions (78), and
conformational equilibria of side chains, are within the range
of applicability of this model. These applications are more
direct than the problems mentioned above as motivation for
further theoretical development of molecular theories of hy-
drophobic effects. The present model is simple and has a clear
connection to statistical thermodynamics. The information
theory approach is sufficiently flexible that a variety of addi-
tional effects can be incorporated into the model. These
qualities open the opportunity for a constructive, quantitative,
and molecular description of hydrophobic effects on biopoly-
mer structure in solution.

Note Added in Proof: Notable results on these problems have appeared
very recently. Computer simulations have showed a third, shallow
minimum in the methane pair cavity pmf at about 1 nm distance (79),
as predicted by the information theory. Using field-theoretic concepts
with evident relations to the work of ref. 15, Callaway (80) has studied
the relation of a geometric entropy to hydrophobic effects and
calculated accurate results for the surface tensions of several liquids.
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